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Generative models

» Generative adversarial networks
» Likelihood based methods

» Autoregressive models
» Variational autoencoders
» Flow based models
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Why Flows?

v

Exact likelihood (no lower bound)
Efficient, both inference and synthesis (?)
Useful latent space

Low memory usage

v

v

v
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Variable transformation

» X ~ Uniform(0, 1)
s Y =f(X)=2X+1
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Variable transformation
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Variable transformation

No Scale, Shift Only

(a+cb+d)

» X ~ Uniform(]0, 1]x]0, 1])
» Transform with
a b )
m=1 4]

x,+dXx,

0

0

X X,+dx,

Figure(By Eric Jang)
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Preserve mass

First case:
p(x)dx = p(y)dy

p(y) = p(x)|dx/dy|
Second case:

Scale with absolut value of determinant of M since transformation v = ¢(u) gives

/f dv_/f ))|dete (u)]du
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Flows

z~q(2)
y =f(2)
Substitute previous equation
of~! of | !
ay(y) = q(2) |det——| = q(z) |det- -

2z =fxo---ofi(z0), Zo~ qo(2o)

a of, |
2 ~ qx(zx) = qo(20) | | =
k=1 k=1

det
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Stacking

» Want to do repeated transformations
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Stacking

v

Want to do repeated transformations
Add (invertible) non-linearity
Good choice:
» Leaky RelLU
Bad choices:

» RelLU
» Sigmoid

v

v

v
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Normalising Flows

Exploit the rule for change of variables:
e Begin with an initial distribution
e Apply a sequence of K invertible transforms

Sampling and Entropy
zg = fxko...0fa °f1(zo)

afy
log gk (zx) = log qo ZO)—Zlogdet 6f
=il
,;Eﬂ
207
/\/\ /, ’,/ [
V |
z i
|
|
“en t

Distribution flows through a sequence of invertible transforms

Rezende and Mohamed, 2015

s |
From Shakir Mohamed and Danilo Rezende’s UAI 2017 Tutorial 9/25




How do we learn the parameters?

» Tractable likelihood function
» Just maximize likelihood of dataset
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MLE
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MLE

z~q(2)
y=1»Ff(z)= [g Z]z

deta—f

ay(y) = q(z) 92

det— ‘

of |7t
deta

a(y) =q(f"(y))

:q([—dc _ab] adzbc) :

ab — cd




Normalizing flows

Data space X Latent space Z

Inference
T ~Ppx

z=[(x)

Generation 4 :
Z~pz «

z=f""(2)

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using Real NVP”. In:

ICLR 2017 (2016) 12/25
.



Normalizing Flows

Effient computations
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Normalizing Flows

Effient computations
Need:

1. Easily invertible
2. Fast determinant of Jacobian

13/25



Normalizing Flows

Planar flow

f(z) = z+ uh(w'z + b)
P(z) =h (w'z+bw

of
det&’ =[1+u’y(z)|
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Normalizing Flows

Planar flow

Unit Gaussian

f(z) = z+ uh(w'z + b)
P(z) =h (w'z+bw

Uniform

of
det—| = |1 +u"4(z
8z’ |1+ u"y(z)]
Danilo Jimenez Rezende and Shakir Mohamed.

“Variational inference with normalizing flows”. In: /CML
2015 (2015)
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Autoregressive flows

» Planar flow is not good enough
» Still want invertablility
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Autoregressive flows

» Planar flow is not good enough
» Still want invertablility
» Can make dependence "triangular”

_ oy
J_Bz

d
detJ = H J,','
i=1

yi = f(z1,),

(Add some reordering between layers)
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Autoregressive flows

Masked Autoregressive Flow (MAF)

Y1 =p1+ 0121
Vi = u(yri-1) + o (¥1i-1)Zi
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Autoregressive flows

Masked Autoregressive Flow (MAF)

Yi=mw +o121
Vi = u(yri-1) + o (¥1i-1)Zi

» Potential issues?

» Not parallelisable in forward pass (generation)
» Inverse Autoregressive Flows

» Not parallelisable in backward pass (density estimation)

16/25
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Autoregressive models

» Pixel RNN
» WaveNet
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Real NVP

Real-valued non-volume preserving transformations

Yik = 2y,
Vi+1:d = Zkt1:d © 0(Z1:6) + p(Z1:4)
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Real NVP

Real-valued non-volume preserving transformations

Yik = 2y,
Vi+1:d = Zkt1:d © 0(Z1:6) + p(Z1:4)

Keep first k dimensions and use them to transform other dimensions

Gives nice paralellization

Z1.4 = Yi:k»
Zit1:d = (Ye1:d — #(Y1:6)) / 0(¥1:k)-

o, it no longer need to be invertible. Can be any neural network etc.
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Glow

Glow: Generative Flow with Invertible 1x1 Convolutions
Multiscale to handle images.
Use 1x1 convolution with same dimension of input and output channels instead of
random permutations.

Description | Function ‘ Reverse Function ] Log-determinant
Actnorm. Vi, jiyij =sOxij+b | Vi,j:x;;=(yij—b)/s | h-w-sum(log|s|)
See Seclion

Invertible 1 x 1 convolution.
W : e xd.

See Seclion

Vi, j:yij = Wx;

Vi, j 1 xij :W_lyw

h-w-log | det(W)|
or
h - w - sum(log |s|)

(see eq. (TO)

Affine coupling layer.

See Section|3.3|and
(Dinh et al| 2014)

Xq,Xp = split(x)
(log s, t) = NN(x3)
s = exp(logs)

Ya =80 Xa+t

Yo =Xp

y = concat(ya,¥s)

Ya, ¥ = split(y)
(logs, t) = NN(yy)
s = exp(log s)

Xa = (Ya — t)/s
Xp =Y¥Yb

X = concat(Xq,Xp)

sum(log([s|))
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Glow

(e) Young (f) Male

Figure 6: Manipulation of attributes of a face. Each row is made by interpolating the latent code of an
image along a vector corresponding to the attribute, with the middle image being the original image
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Comparisons

» For same parameter budget GANs have sharper images
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» GANs can set large subspace of manifold to have zero probability
» In NF, all data will have positive likelihood

» "The likelihood objective doesn’t allow trading off diversity for realism, so
models need to be much larger to achieve realism”

» Automatically obtain latent space
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Comparisons

» Training NF model can take a long time

» 40 GPUs for days/week to train GLOW for 256px images (about 20008 AWS
cost)

» GLOW has 1200 convolutional layers
» Much faster at generating data than AR models (can be orders of magnitude)
» NF generating a 256x256 image at batch size 1 takes about 130ms on a single
1080 Ti
» AR models can give better likelihoods
» GANs hard to optimize and have difficulty assessing overfitting and
generalization
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Usage

Value functions in RL
Anomaly detection
Generate text and music
Variational inference

v

v

v

v
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Conclusion

Normalizing flows:

Exact likelihood

Fast inference and sampling?

Useful latent space

Tensorflow has Bijector APl with built in tools

v

v

v

v
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