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I Generative adversarial networks
I Likelihood basedmethods

I Autoregressive models
I Variational autoencoders
I Flow basedmodels
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I Exact likelihood (no lower bound)

I Efficient, both inference and synthesis (?)
I Useful latent space
I Lowmemory usage
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I Y = f (X) = 2X + 1

(By Eric Jang)
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First case:
p(x)dx = p(y)dy

p(y) = p(x)|dx/dy|

Second case:

Scale with absolut value of determinant ofM since transformation v = φ(u) gives∫
f (v)dv =

∫
f (φ(u))|detφ′(u)|du
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z ∼ q(z)
y = f (z)

Substitute previous equation

qy(y) = q(z)
∣∣∣∣det∂f−1

∂z

∣∣∣∣ = q(z)
∣∣∣∣det ∂f∂z

∣∣∣∣−1

zK = fK ◦ · · · ◦ f1(z0), z0 ∼ q0(z0)

zK ∼ qK(zK) = q0(z0)
K∏

k=1

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣−1
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I Add (invertible) non-linearity
I Good choice:

I Leaky ReLU
I Bad choices:

I ReLU
I Sigmoid
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How dowe learn the parameters?
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I Tractable likelihood function
I Just maximize likelihood of dataset
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z ∼ q(z)

y = f (z) =
[
a b
c d

]
z

qy(y) = q(z)
∣∣∣∣det∂f−1

∂z

∣∣∣∣ = q(z)
∣∣∣∣det ∂f∂z

∣∣∣∣−1

qy(y) = q(f−1(y))
∣∣∣∣det∂f∂z

∣∣∣∣−1

= q(
[
d −b
−c a

]
y

ad − bc
)

∣∣∣∣ 1

ab− cd
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Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using Real NVP”. In:
ICLR 2017 (2016)
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Planar flow

f (z) = z+ uh(wTz+ b)

ψ(z) = h′(wTz+ b)w∣∣∣∣det∂f∂z
∣∣∣∣ = ∣∣1 + uTψ(z)

∣∣

Danilo Jimenez Rezende and Shakir Mohamed.
“Variational inference with normalizing flows”. In: ICML
2015 (2015)
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I Planar flow is not good enough
I Still want invertablility

I Canmake dependence ”triangular”

yi = f (z1:i), J =
∂y
∂z

det J =
d∏

i=1

Jii

(Add some reordering between layers)
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Masked Autoregressive Flow (MAF)

y1 = µ1 + σ1z1
yi = µ(y1:i−1) + σ(y1:i−1)zi

I Potential issues?
I Not parallelisable in forward pass (generation)
I Inverse Autoregressive Flows

I Not parallelisable in backward pass (density estimation)
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(By Eric Jang https://blog.evjang.com/2018/01/nf2.html)
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I Pixel RNN
I WaveNet
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Real-valued non-volume preserving transformations

y1:k = z1:k,
yk+1:d = zk+1:d ◦ σ(z1:k) + µ(z1:k)

Keep first k dimensions and use them to transform other dimensions

Gives nice paralellization

z1:k = y1:k,
zk+1:d = (yk+1:d − µ(y1:k)) / σ(y1:k).

σ, µ no longer need to be invertible. Can be any neural network etc.
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Glow: Generative Flow with Invertible 1×1 Convolutions
Multiscale to handle images.
Use 1x1 convolution with same dimension of input and output channels instead of
random permutations.
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I For same parameter budget GANs have sharper images

I GANs can set large subspace of manifold to have zero probability
I In NF, all data will have positive likelihood

I ”The likelihood objective doesn’t allow trading off diversity for realism, so
models need to bemuch larger to achieve realism”

I Automatically obtain latent space
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I Training NFmodel can take a long time

I 40 GPUs for days/week to train GLOW for 256px images (about 2000$ AWS
cost)

I GLOW has 1200 convolutional layers
I Much faster at generating data than ARmodels (can be orders of magnitude)

I NF generating a 256×256 image at batch size 1 takes about 130ms on a single
1080 Ti

I ARmodels can give better likelihoods
I GANs hard to optimize and have difficulty assessing overfitting and
generalization
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I Value functions in RL
I Anomaly detection
I Generate text andmusic
I Variational inference



Conclusion
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Normalizing flows:
I Exact likelihood
I Fast inference and sampling?
I Useful latent space
I Tensorflow has Bijector API with built in tools
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