
Introduction to Normalizing Flows

by

Emilio Jorge

October 10, 2019

Contents

1. Generative modelling
2. Concept of normalizing flows
3. Somemodern methods

Generativemodels

1/25

Want to represent (generate from) distribution p(x)

Some obstacles arise:
I Limiting to simple parametric distributions might not be good enough
I Nice if we have tractable likelihood

I Evaluate likelihood of new data
I Find conditional relationships
I Can be used to evaluate models

Generativemodels

1/25

Want to represent (generate from) distribution p(x)

Some obstacles arise:
I Limiting to simple parametric distributions might not be good enough

I Nice if we have tractable likelihood
I Evaluate likelihood of new data
I Find conditional relationships
I Can be used to evaluate models

Generativemodels

1/25

Want to represent (generate from) distribution p(x)

Some obstacles arise:
I Limiting to simple parametric distributions might not be good enough
I Nice if we have tractable likelihood

I Evaluate likelihood of new data
I Find conditional relationships
I Can be used to evaluate models

Generativemodels

1/25

Want to represent (generate from) distribution p(x)

Some obstacles arise:
I Limiting to simple parametric distributions might not be good enough
I Nice if we have tractable likelihood

I Evaluate likelihood of new data
I Find conditional relationships
I Can be used to evaluate models

Generativemodels

1/25

Want to represent (generate from) distribution p(x)

Some obstacles arise:
I Limiting to simple parametric distributions might not be good enough
I Nice if we have tractable likelihood

I Evaluate likelihood of new data
I Find conditional relationships
I Can be used to evaluate models

Generativemodels

2/25

I Generative adversarial networks
I Likelihood basedmethods

I Autoregressive models
I Variational autoencoders
I Flow basedmodels

Why Flows?

3/25

I Exact likelihood (no lower bound)

I Efficient, both inference and synthesis (?)
I Useful latent space
I Lowmemory usage

Why Flows?

3/25

I Exact likelihood (no lower bound)
I Efficient, both inference and synthesis (?)

I Useful latent space
I Lowmemory usage

Why Flows?

3/25

I Exact likelihood (no lower bound)
I Efficient, both inference and synthesis (?)
I Useful latent space
I Lowmemory usage

Variable transformation

4/25

I X ∼ Uniform(0, 1)

I Y = f (X) = 2X + 1

(By Eric Jang)

Variable transformation

4/25

I X ∼ Uniform(0, 1)

I Y = f (X) = 2X + 1

(By Eric Jang)

Variable transformation

5/25

I X ∼ Uniform([0, 1]x[0, 1])

I Transformwith

M =

[
a b
c d

]
Figure(By Eric Jang)

Variable transformation

5/25

I X ∼ Uniform([0, 1]x[0, 1])
I Transformwith

M =

[
a b
c d

]
Figure(By Eric Jang)

Preservemass

6/25

First case:
p(x)dx = p(y)dy

p(y) = p(x)|dx/dy|

Second case:

Scale with absolut value of determinant ofM since transformation v = φ(u) gives∫
f (v)dv =

∫
f (φ(u))|detφ′(u)|du

Flows

7/25

z ∼ q(z)
y = f (z)

Substitute previous equation

qy(y) = q(z)
∣∣∣∣det∂f−1

∂z

∣∣∣∣ = q(z)
∣∣∣∣det ∂f∂z

∣∣∣∣−1

zK = fK ◦ · · · ◦ f1(z0), z0 ∼ q0(z0)

zK ∼ qK(zK) = q0(z0)
K∏

k=1

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣−1

Flows

7/25

z ∼ q(z)
y = f (z)

Substitute previous equation

qy(y) = q(z)
∣∣∣∣det∂f−1

∂z

∣∣∣∣ = q(z)
∣∣∣∣det ∂f∂z

∣∣∣∣−1

zK = fK ◦ · · · ◦ f1(z0), z0 ∼ q0(z0)

zK ∼ qK(zK) = q0(z0)
K∏

k=1

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣−1

Flows

7/25

z ∼ q(z)
y = f (z)

Substitute previous equation

qy(y) = q(z)
∣∣∣∣det∂f−1

∂z

∣∣∣∣ = q(z)
∣∣∣∣det ∂f∂z

∣∣∣∣−1

zK = fK ◦ · · · ◦ f1(z0), z0 ∼ q0(z0)

zK ∼ qK(zK) = q0(z0)
K∏

k=1

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣−1

Stacking

8/25

I Want to do repeated transformations

I Add (invertible) non-linearity
I Good choice:

I Leaky ReLU
I Bad choices:

I ReLU
I Sigmoid

Stacking

8/25

I Want to do repeated transformations
I Add (invertible) non-linearity
I Good choice:

I Leaky ReLU
I Bad choices:

I ReLU
I Sigmoid

9/25From Shakir Mohamed and Danilo Rezende’s UAI 2017 Tutorial

How dowe learn the parameters?

10/25

I Tractable likelihood function
I Just maximize likelihood of dataset

MLE

11/25

z ∼ q(z)

y = f (z) =
[
a b
c d

]
z

qy(y) = q(z)
∣∣∣∣det∂f−1

∂z

∣∣∣∣ = q(z)
∣∣∣∣det ∂f∂z

∣∣∣∣−1

qy(y) = q(f−1(y))
∣∣∣∣det∂f∂z

∣∣∣∣−1

= q(
[
d −b
−c a

]
y

ad − bc
)

∣∣∣∣ 1

ab− cd

∣∣∣∣

MLE

11/25

z ∼ q(z)

y = f (z) =
[
a b
c d

]
z

qy(y) = q(z)
∣∣∣∣det∂f−1

∂z

∣∣∣∣ = q(z)
∣∣∣∣det ∂f∂z

∣∣∣∣−1

qy(y) = q(f−1(y))
∣∣∣∣det∂f∂z

∣∣∣∣−1

= q(
[
d −b
−c a

]
y

ad − bc
)

∣∣∣∣ 1

ab− cd

∣∣∣∣

Normalizing flows

12/25

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using Real NVP”. In:
ICLR 2017 (2016)

Normalizing Flows

13/25

Effient computations

Need:
1. Easily invertible
2. Fast determinant of Jacobian

Normalizing Flows

13/25

Effient computations
Need:
1. Easily invertible
2. Fast determinant of Jacobian

Normalizing Flows

14/25

Planar flow

f (z) = z+ uh(wTz+ b)

ψ(z) = h′(wTz+ b)w∣∣∣∣det∂f∂z
∣∣∣∣ = ∣∣1 + uTψ(z)

∣∣

Danilo Jimenez Rezende and Shakir Mohamed.
“Variational inference with normalizing flows”. In: ICML
2015 (2015)

Normalizing Flows

14/25

Planar flow

f (z) = z+ uh(wTz+ b)

ψ(z) = h′(wTz+ b)w∣∣∣∣det∂f∂z
∣∣∣∣ = ∣∣1 + uTψ(z)

∣∣
Danilo Jimenez Rezende and Shakir Mohamed.
“Variational inference with normalizing flows”. In: ICML
2015 (2015)

Autoregressive flows

15/25

I Planar flow is not good enough
I Still want invertablility

I Canmake dependence ”triangular”

yi = f (z1:i), J =
∂y
∂z

det J =
d∏

i=1

Jii

(Add some reordering between layers)

Autoregressive flows

15/25

I Planar flow is not good enough
I Still want invertablility
I Canmake dependence ”triangular”

yi = f (z1:i), J =
∂y
∂z

det J =
d∏

i=1

Jii

(Add some reordering between layers)

Autoregressive flows

16/25

Masked Autoregressive Flow (MAF)

y1 = µ1 + σ1z1
yi = µ(y1:i−1) + σ(y1:i−1)zi

I Potential issues?
I Not parallelisable in forward pass (generation)
I Inverse Autoregressive Flows

I Not parallelisable in backward pass (density estimation)

Autoregressive flows

16/25

Masked Autoregressive Flow (MAF)

y1 = µ1 + σ1z1
yi = µ(y1:i−1) + σ(y1:i−1)zi

I Potential issues?

I Not parallelisable in forward pass (generation)
I Inverse Autoregressive Flows

I Not parallelisable in backward pass (density estimation)

Autoregressive flows

16/25

Masked Autoregressive Flow (MAF)

y1 = µ1 + σ1z1
yi = µ(y1:i−1) + σ(y1:i−1)zi

I Potential issues?
I Not parallelisable in forward pass (generation)

I Inverse Autoregressive Flows
I Not parallelisable in backward pass (density estimation)

Autoregressive flows

16/25

Masked Autoregressive Flow (MAF)

y1 = µ1 + σ1z1
yi = µ(y1:i−1) + σ(y1:i−1)zi

I Potential issues?
I Not parallelisable in forward pass (generation)
I Inverse Autoregressive Flows

I Not parallelisable in backward pass (density estimation)

Autoregressive flows

16/25

Masked Autoregressive Flow (MAF)

y1 = µ1 + σ1z1
yi = µ(y1:i−1) + σ(y1:i−1)zi

I Potential issues?
I Not parallelisable in forward pass (generation)
I Inverse Autoregressive Flows

I Not parallelisable in backward pass (density estimation)

Normalizing Flows

17/25
(By Eric Jang https://blog.evjang.com/2018/01/nf2.html)

Autoregressivemodels

18/25

I Pixel RNN
I WaveNet

Real NVP

19/25

Real-valued non-volume preserving transformations

y1:k = z1:k,
yk+1:d = zk+1:d ◦ σ(z1:k) + µ(z1:k)

Keep first k dimensions and use them to transform other dimensions

Gives nice paralellization

z1:k = y1:k,
zk+1:d = (yk+1:d − µ(y1:k)) / σ(y1:k).

σ, µ no longer need to be invertible. Can be any neural network etc.

Real NVP

19/25

Real-valued non-volume preserving transformations

y1:k = z1:k,
yk+1:d = zk+1:d ◦ σ(z1:k) + µ(z1:k)

Keep first k dimensions and use them to transform other dimensions

Gives nice paralellization

z1:k = y1:k,
zk+1:d = (yk+1:d − µ(y1:k)) / σ(y1:k).

σ, µ no longer need to be invertible. Can be any neural network etc.

Real NVP

19/25

Real-valued non-volume preserving transformations

y1:k = z1:k,
yk+1:d = zk+1:d ◦ σ(z1:k) + µ(z1:k)

Keep first k dimensions and use them to transform other dimensions

Gives nice paralellization

z1:k = y1:k,
zk+1:d = (yk+1:d − µ(y1:k)) / σ(y1:k).

σ, µ no longer need to be invertible. Can be any neural network etc.

Glow

20/25

Glow: Generative Flow with Invertible 1×1 Convolutions
Multiscale to handle images.
Use 1x1 convolution with same dimension of input and output channels instead of
random permutations.

Glow

21/25

Comparisons

22/25

I For same parameter budget GANs have sharper images

I GANs can set large subspace of manifold to have zero probability
I In NF, all data will have positive likelihood

I ”The likelihood objective doesn’t allow trading off diversity for realism, so
models need to bemuch larger to achieve realism”

I Automatically obtain latent space

Comparisons

22/25

I For same parameter budget GANs have sharper images
I GANs can set large subspace of manifold to have zero probability

I In NF, all data will have positive likelihood
I ”The likelihood objective doesn’t allow trading off diversity for realism, so
models need to bemuch larger to achieve realism”

I Automatically obtain latent space

Comparisons

22/25

I For same parameter budget GANs have sharper images
I GANs can set large subspace of manifold to have zero probability

I In NF, all data will have positive likelihood
I ”The likelihood objective doesn’t allow trading off diversity for realism, so
models need to bemuch larger to achieve realism”

I Automatically obtain latent space

Comparisons

22/25

I For same parameter budget GANs have sharper images
I GANs can set large subspace of manifold to have zero probability

I In NF, all data will have positive likelihood
I ”The likelihood objective doesn’t allow trading off diversity for realism, so
models need to bemuch larger to achieve realism”

I Automatically obtain latent space

Comparisons

23/25

I Training NFmodel can take a long time

I 40 GPUs for days/week to train GLOW for 256px images (about 2000$ AWS
cost)

I GLOW has 1200 convolutional layers
I Much faster at generating data than ARmodels (can be orders of magnitude)

I NF generating a 256×256 image at batch size 1 takes about 130ms on a single
1080 Ti

I ARmodels can give better likelihoods
I GANs hard to optimize and have difficulty assessing overfitting and
generalization

Comparisons

23/25

I Training NFmodel can take a long time
I 40 GPUs for days/week to train GLOW for 256px images (about 2000$ AWS
cost)

I GLOW has 1200 convolutional layers

I Much faster at generating data than ARmodels (can be orders of magnitude)
I NF generating a 256×256 image at batch size 1 takes about 130ms on a single

1080 Ti
I ARmodels can give better likelihoods

I GANs hard to optimize and have difficulty assessing overfitting and
generalization

Comparisons

23/25

I Training NFmodel can take a long time
I 40 GPUs for days/week to train GLOW for 256px images (about 2000$ AWS
cost)

I GLOW has 1200 convolutional layers
I Much faster at generating data than ARmodels (can be orders of magnitude)

I NF generating a 256×256 image at batch size 1 takes about 130ms on a single
1080 Ti

I ARmodels can give better likelihoods
I GANs hard to optimize and have difficulty assessing overfitting and
generalization

Comparisons

23/25

I Training NFmodel can take a long time
I 40 GPUs for days/week to train GLOW for 256px images (about 2000$ AWS
cost)

I GLOW has 1200 convolutional layers
I Much faster at generating data than ARmodels (can be orders of magnitude)

I NF generating a 256×256 image at batch size 1 takes about 130ms on a single
1080 Ti

I ARmodels can give better likelihoods

I GANs hard to optimize and have difficulty assessing overfitting and
generalization

Comparisons

23/25

I Training NFmodel can take a long time
I 40 GPUs for days/week to train GLOW for 256px images (about 2000$ AWS
cost)

I GLOW has 1200 convolutional layers
I Much faster at generating data than ARmodels (can be orders of magnitude)

I NF generating a 256×256 image at batch size 1 takes about 130ms on a single
1080 Ti

I ARmodels can give better likelihoods
I GANs hard to optimize and have difficulty assessing overfitting and
generalization

Usage

24/25

I Value functions in RL
I Anomaly detection
I Generate text andmusic
I Variational inference

Conclusion

25/25

Normalizing flows:
I Exact likelihood
I Fast inference and sampling?
I Useful latent space
I Tensorflow has Bijector API with built in tools

25/25

Danilo Jimenez Rezende and Shakir Mohamed. “Variational inference with normalizing
flows”. In: ICML 2015 (2015).

George Papamakarios, Theo Pavlakou, and Iain Murray.Masked Autoregressive Flow for
Density Estimation. 2017. arXiv: 1705.07057.

Durk P Kingma et al. “Improved variational inference with inverse autoregressive flow”. In:
NIPS 2016. 2016.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using Real
NVP”. In: ICLR 2017 (2016).

Durk P Kingma and Prafulla Dhariwal. “Glow: Generative flow with invertible 1x1
convolutions”. In: NIPS 2018. 2018.

Adam Kosiorek. Normalizing Flows. Apr. 2018. URL:
http://akosiorek.github.io/ml/2018/04/03/norm_flows.html.

Eric Jang. Normalizing Flows Tutorial, Part 1: Distributions and Determinants. Jan. 2018.
URL: https://blog.evjang.com/2018/01/nf1.htmll.

Eric Jang. Normalizing Flows Tutorial, Part 2: Modern Normalizing Flows. Jan. 2018. URL:
https://blog.evjang.com/2018/01/nf2.html.

http://arxiv.org/abs/1705.07057
http://akosiorek.github.io/ml/2018/04/03/norm_flows.html
https://blog.evjang.com/2018/01/nf1.htmll
https://blog.evjang.com/2018/01/nf2.html

